Isar-Plan Munich

Possibilities and restrictions of river Restoration within urban areas

Stefan Joven, Office of Water Management in Munich

1		
Catchment area of the Upper Isar Average low water discharge Average medium discharge	2.814 40 90	km m³/sec m³/sec
Flood discharges: • 1940 (before the construction of Sylvenstein Reservoir) • 1999 (May) • One-year-flood • Average maximum dischage	1.440 870 350 420	m ³ /sec m ³ /sec m ³ /sec m ³ /sec
Design flood	1.100	m ³ /sec
Legally defined minimum discharge, which to has to remain in the parent stream while an ta amount of 70 to 80 m ³ /sec is diverted into the 6 km long power canal called "Werkkanal".	oday orget	5 m3/sec 12 m3/sec

Once there was a canalized water course . . .

Principal Aims and Measures

Flood Protection

River Restoration

Recreation

River slopes . . .

River bottom ramps

Gravel banks, riffles and pools
Natural river slopes
River bottom rock ramps / slides
Fish by-passes
New habitats for flora and fauna
Attractive recreation spaces for people

today there is a (restored) river

Measures in Detail

- Raising and reinforcement of river dikes
- Removement of concrete embankments
- Widening of the river cross section
- Increase of capacity in river run off
- Natural river bottom rock ramps or slides with riffles and pools instead of linear low weirs
- Initialization of dynamic river bed processes, development of natural river structures
- Longitudinal river continuity in order to enable river organisms i.e. fish to wander stream upwards
- Establishment of typical river habitats

Dynamic river bed processes

Marting

Improving hygienic water quality to enable seasonal swimming

Reduction of bacterial loads by UV-radiation of sewage plant outflow

